VSI Mach4 Registers
User Guide

Document Revision 1.01
(Updated January 24, 2019)

© 2019 Vital Systems Inc.
Atlanta, GA USA

For more information please visit the product web page:
www.vitalsystem.com/motion/sdk

http://www.vitalsystem.com/portal/motion/SDK/motion_control_API.php

VSI Mach4 Registers User Guide

Contents

R ol=] T WA e < T=T 0 g T T o | SO O PP T PP PP PPPPPPPTTIN 4

T ageTe [V AT] o HUUT PP URTOPPTTOUPRI 5

AV LY Lol oV A =T =T U PRRTPRPRNt 6
(6e] 1 4100 =T o o (PR SROTPOTRPUS U PTOPPOPRRPRRT 6
HICON_Config of DSPMC_CONTIg ...uuiiiiiiiiiiicciiie ettt ettt e et e e e ae e e e e abe e e s e aaa e e e entae e e eenreeas 8
)V 1 [¢] 6o 1V o} PPN 8
AXIS_DISABLE _BITS eetettitittttitttittttttttttteeteeaeeeeesaeeseseseeeeaeeeeraessesasasssssasesssssasssasssasnsssssnsssssssssssnsnsnnnsnnnnnnns 8
RUNDEVICEIMACIO ...ttt s b e st e s e e s mb e e e s s nba e e s ssrae s 9
(0010 iT={ o Y- Yo [0S PSR 9
SEATUSBITS ..ot e s e e s senee e e s e 9
(D=4 =1 [10 4 o 10 £ PSP SPR 9
LoT={0 YT g 1o 1= 3 =1 o [PR 9
oY ={0 1Y T g T =] 2 - (TP 9
NLoT={0 YT g g T [=] o 1Y o] s F USSR 10
LaSEIIMEaSUIEIMENTAXIS. . eeiiiiutieeeiittee e ettt e e ettt e e ettt e s et e e st e s s sabe e e e s aabee e s sanreeeseanbeeeseanbaeesennreeesenreeas 10
=R g DT = o ol PP PP PUPPOT 10
LaSEIMMEBASUIESUCCESS ...ttt e e s s s e a et e e e s s s snren e e e e e s seaaas 10
=T V2T [0 o 1T = 4[] o Tt RPN 10
PoWerMaXxCoOmMMANOREEuuuiiiieiiiiiiiiiee e e et e e e e e e et e e e e e e e e baaeeeee e e e e s nnbeteeeeeeeeesnnsananeaeesenns 10
POWEIMAXVAIUBREEiiiiiiiiee ettt ettt ettt e e e ettt e e e e et e e e s sbaeeesaabaeeeesabeeesesssaeeeennseeeesnnsenas 11
POWEIMAXREAUREE ... uvieiiiiiiie ettt ettt et e e et e e e e ettt e e e s et eeeessabaeeesanbeeeeasabeeesensseeesensseeesannsenas 11
[o olo e [T (012 TR U USRS 11
ZEIOAIIENCOUEIS ..ttt ettt ettt sttt ettt e bt e s bt e sat e st e et e et e e bt e abeesbeesaeesaeeeateebeenbeesbeesaeanas 11
[o oloTe [T VA= Lo Yol nY/ (0= TSRS 11
VADC_(0-7)eeuterteeueenteeteete st ettt e et e s bt et e s bt e ht et s bt et e s bt e ate sk e she et e sheea b et e e bt et e eb e et e nheeh e e bt ehe et e nbe et e neeeneen 11
DRO_TO_CLI_{0-19) .eueeterieeieiteeitete ettt ettt sttt et sb st e st s bt et s b et e bt sae et e sbe e s e sbeeseenbesbeensenneeanan 11
DRO_FFOM_CEFL_(0-19) ceveiiiiiiee ettt ettt e ettt e e e ettt e e e e et e e e e e ba e e e e e abae e e eeabeeaeeasbaeeeennbeeeeearenas 12
LED_TO_ CEIL_(0-31) vttt e e e e eeese s ee e et e s eseseeeeeseeeeseseseesesseseseeseeaesseeseesseeesensaees 12
[o I oY o JE @4 N (O 2) ISP 12
=T o] D I=Tolol =1 I T2 TSP 12
T o1 R = [To [N e U] £ PRR 12
- Vo] T g Yo Lo WY =T od Y SRR 13

© 2019 Vital Systems, Inc. 1 www.vitalsystem.com

VSI Mach4 Registers User Guide

RTAPIMINTAPRPIV ... e a s e s e s nan s e s nsasnsnsnsnsnsnsssnnnsnsnsnsnnnsnsnnnnnsnsnnnnnn 13

R APDIMINT AP TIMIE c.ettteeeee ettt e e ettt e e e e s ettt eeeeeesaaabareeeeeeeessasnbebaeeeeessasannsanaaaeessannns 13
RT AP DI EREVS. ..ee i iiiiee ettt e e et e e e et e e e e eta e e e eeabaee e eastaeeesaataeeeeanbaaeeeanseeeeenssaeeeennseeesenasenas 13
Yo =1 A= (14 D] - 2SR 13
RTAPRETIACTRATIO ...eeeeieieieeteee ettt e e e e e st et e e e e e s st beeeeeeeessnnrebaeeeeessnnns 13
T o aI=T=To Lo T A YT o H PP 13

B (O Y oY 1= X o F=1 o1 1Yo PSSR 13

B (O =51 1Y, (o e 1 PSSR 14

B (O a 1T T4 0 oY Yot u o o [U SR 14

I (O \Y N[0 =17 o (o T o Yot d T o PSPPSR 14

L (O o TT=To =T T =T o PRSP 14

B (O Yolol] =T oY o | USSR 14
THC _FEEArat@ANTIDIVE.ccctiiee ettt ettt et e et e e e st e e e e e tte e e e ataeeeenteeesennbaeesentanesanrenas 14
THC_MaxTipVOItSRAtEOTCHANGEoeeeeiieiecteee et et e e et e e e e b e e e enbee e e enreeas 14

L (O 1T o= T=1 = o PRSPPI 14

B (O P T) o =17 =4 o PRSPPI 15

B (O B (o LT g Y= o ToF Lo [0 XY =] USSR 15

B (O 1= =Y D=1 P USSR 15

I 5 [e T 14 o] | D7) 1 1 PP SPP 15

I (O 1 o] o T =T =T [PPSR 15

B (O 1= (=T T ol =] oo YU T o PSPPI 15
VA N AT =g N =T g o Y 1 0] o] L= U P 16
POWEIIMIGX B5/85 ..eeeeiiiieeeeieeeteeeeeeeeeetteeeeeeeeeasaaetteeessssasssaateeeesssesaassateeeesssssassssteeeesssssassaseeeeesssenannnnnes 16
Example send CUT_MODE_FORCE command to POWerMax65/85:ccceevreeveenreesvesireereereesveennes 16
Example read result from POWEIMAaX65/85:ccuecveiiveereereeireecieeseecreereesreesteesteesteesaveebeebeereens 16
Measure a Part using @ Laser INPUL SENSOT........iiiiiiiiiiiieieieeeeeeeeeeeee e ee e ee e ee e e e eeeeeeeeeeeeeeeeeeseeeseeseeeeeeeees 16
OVEBIVIBW ...ttt ettt ettt e s eb et e s e b et e e s eab et e e s e b et e e s e be e e e s eabeeeesabeeeesaaraeeessaneneessanes 16
Yol (=TT o T o =T BTl | o) SR ERRRE 17
210 o] Y@ 1ol =T Yol o PP 17

o KO o o o) TN 18
Control FeedRate/RapidRate Override Using Encoder VeloCityccoveeeeveeeeeeiiiee e 19
OVEBIVIBW ..ttt ettt e sttt e sttt e s eab e e e s e b et e e s amr e e e e s amb e e e e s aabeeeesearaneesaaneneesaareneessaneneessanen 19
Yo g T<T T o =T BT ol a1 TR 19

© 2019 Vital Systems, Inc. 2 www.vitalsystem.com

VSI Mach4 Registers User Guide

o I Y o o o) 20
270N o] T @ [Tol =T Yol o) PSPPI 20
AXiS MOVEMENT OVEITIAEeeutieiietieeite ettt sb e sttt et e s bt e sbeesatesateeab e e b e e bt e sneesneeeneees 20
Absolute ENcoder FEEADACK........coiuiiiiiieeeeceee ettt 21
Initialize Encoder Axis With COUNTS PEr RVcc.ciiiiiiiiiieiie ettt 21
Read Absolute Encoder Position (Mach4 Enable Button Down Script)cccceeecueeerieescieeevneescveeeee 21

© 2019 Vital Systems, Inc. 3 www.vitalsystem.com

VSI Mach4 Registers User Guide

License Agreement

Before using this software, please take a moment to go thru this License agreement. Any use of this
software indicate your acceptance to this agreement.

It is the nature of all machine tools that they are dangerous devices. In order to be permitted to use
this software on any machine you must agree to the following license:

| agree that no-one other than the owner of this machine, will, under any circumstances be
responsible, for the operation, safety, and use of this machine. | agree there is no situation under which
| would consider Vital Systems, or any of its distributors to be responsible for any losses, damages, or
other misfortunes suffered through the use of this software. | understand that this software is very
complex, and though the engineers make every effort to achieve a bug free environment, that | will
hold no-one other than myself responsible for mistakes, errors, material loss, personal damages,
secondary damages, faults or errors of any kind, caused by any circumstance, any bugs, or any
undesired response by the board and its software while running my machine or device.

| fully accept all responsibility for the operation of this machine while under the control of this
software, and for its operation by others who may use the machine. It is my responsibility to warn any
others who may operate any device under the control of DSPMC board of the limitations so imposed.

| fully accept the above statements, and | will comply at all times with standard operating procedures
and safety requirements pertinent to my area or country, and will endeavor to ensure the safety of all
operators, as well as anyone near or in the area of my machine.

WARNING: Machines in motion can be extremely
dangerous! It is the responsibility of the user to design
effective error handling and safety protection as part of
the system. VITAL Systems shall not be liable or
responsible for any incidental or consequential damages.
By Using the VSI motion controller, you agree to the
license agreement.

© 2019 Vital Systems, Inc. 4 www.vitalsystem.com

VSI Mach4 Registers User Guide

Introduction

Mach4 software allows the creation of globally accessible variables called registers. These registers can
be accessed and changed using the scripting functionality in the screen or script editor built into
Mach4. The VSI Motion Plugin contains registers designed for use with specific functions.

The registers of the VSI Motion controller can be manually viewed and changed by accessing the Mach4
Register Diagnostics window.

Diagnostic Wizard Operator Help

Logging...

HICON (v2.02.27) - Vital System Inc.
Keyboard Inputs - Newfangled Solutions
Modbus - Newfangled Solutions

Regfile - Newfangled Solutions

=T m

d Variable Range |
'< core/global A .
- core/inst
HICON
Command: 0

HiCON_Config: 0
SyncCount: 2
AXIS_DISABLE_BITS: 0
RunDeviceMacro: 0
Configload: 1
StatusBits: 1
DigitalOutputs: 0
JogOverrideEnable: 0
JogOverrideRate: 0
JogOverridePosition: 0
ZeroAllEncoders: 0
LaserMeasurementAxis: 0
LaserDistance: 0
LaserStartPoint: 0
LaserFndPoint: 0

The full name of a VSI device register is the register prefix followed by the register name.

The register prefix is the name of the VSI Motion Controller (ie, HICON, DSPMC).

Values in a register are written to or read from, depending on the use case. Some registers are read

only.

To learn more about editing the screen in Mach4, download the Mach4 CNC Controller Screen Editing

Guide here.

© 2019 Vital Systems, Inc.

www.vitalsystem.com

https://www.machsupport.com/wp-content/uploads/2014/05/Mach4%20Screen%20Editor%20V1.0.pdf
https://www.machsupport.com/wp-content/uploads/2014/05/Mach4%20Screen%20Editor%20V1.0.pdf

VSI Mach4 Registers User Guide

VSI Mach4 Registers

These registers are globally accessible in Mach4 and were created for specific functionality related to
VS| motion controllers.

Command

Send custom commands to the VSI motion controller. Some commands return a result. Some
commands accept a value followed by a ‘.’ after the command. It is recommended to clear the
command register by sending an empty string before sending a command.

local inst = mc.mcGetInstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences”, "MotionDevice", 'NO MOTION')
local commandReg = mc.mcRegGetHandle(inst, motionDevice .. "/Command")
mc.mcRegSendCommand(commandReg, "")

Available Commands:

e MOTION_SYNC - Syncs the motor position between Mach4 planner and motion controller.
This script will only work if Mach4 is in an idle state, ie no motion occurring.
local inst = mc.mcGetlInstance()
local motionDevice = mc.mcProfileGetString(inst, "Preferences"”, "MotionDevice", 'NO MOTION')
local commandReg = mc.mcRegGetHandle(inst, motionDevice .. "/Command")
mc.mcRegSendCommand(commandReg, "motion_sync")
e RELOAD_PROFILE_SETTINGS — Reloads the plugin configuration from the last saved profile.

local inst = mc.mcGetlnstance()
local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local commandReg = mc.mcRegGetHandle(inst, motionDevice .. "/Command")
mc.mcRegSendCommand(commandReg, "reload_profile_settings")

e REVERSE_TRAJECTORY_START — allows the user to move along the reversed path or
trajectory of a recent move. Follow the instructions below to use this function.
Enable the reverse XY toolpath feature in the VSI plugin configuration window.

e —|

[] Enable Reverse X¥ Toolpath

‘Warning: Enabling this feature will

write the X and ¥ motion

coordinates to a file so you can

mave the X and ¥ axis in reverse

to backtrack the cutter. This is

useful in Plasma and WaterJet

applications. For longer GCode

runs, this file may become very

large while recording the X Y

toolpath. If you are not using Plasma

or Waterlet, then do not

Factory Reset Update HICON
oK Cancel Apply
[| —

© 2019 Vital Systems, Inc. 6

www.vitalsystem.com

VSI Mach4 Registers User Guide

Create a button using the Screen Editor and add the following to the Left Down Script:

local inst = mc.mcGetlnstance()
local commandReg = mc.mcRegGetHandle(inst, motionDevice .. " /Command")
mc.mcRegSendCommand(commandReg, "REVERSE_TRAJECTORY_START")

Add the following to the Left Up Script in the same button:

local inst = mc.mcGetlInstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local commandReg = mc.mcRegGetHandle(inst, motionDevice .. "/Command")
mc.mcRegSendCommand(commandReg, "motion_sequence_stop")

Run a gcode file that has XY motion. Once the gcode stops or is stopped by the user, press
and hold down the button created in the previous steps and the XY motion will move in the
reverse trajectory from the end of the last gcode motion. The machine must be enabled
when using this button script.

e MOTION_SEQUENCE_STOP — performs stop motion

local inst = mc.mcGetlnstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local commandReg = mc.mcRegGetHandle(inst, motionDevice .. "/Command")
mc.mcRegSendCommand(commandReg, "motion_sequence_stop")

e CLEAR_CUSTOM_REGS - removes all values in the VSI custom register

local inst = mc.mcGetlInstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences"”, "MotionDevice", 'NO MOTION')
local commandReg = mc.mcRegGetHandle(inst, motionDevice .. "/Command")
mc.mcRegSendCommand(commandReg, "clear_custom_regs")

e FW_VERSION - returns the value of the current firmware

local inst = mc.mcGetlnstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local commandReg = mc.mcRegGetHandle(inst, motionDevice .. "/Command")

local fwVersion = mc.mcRegSendCommand(commandReg, "fw_version")

e SETUP_ABSENC_AXIS_PARAM:<value> - setup an axis that uses an absolute encoder. See
example code.

e EXEC_ABSENC_READ_CMD:<value> - start reading the absolute encoder. See example
code.

e SET_ABS_ENC_HOMEPOS — set the current home position of the absolute encoder. See
example code.

© 2019 Vital Systems, Inc. 7 www.vitalsystem.com

VSI Mach4 Registers User Guide

e CLEAR_ABS_ENC_HOMEPOS — clear the home position of the absolute encoder. See
example code.

e CREATE_REG:<value> - Creates a custom register. The custom register prefix will be
“VSIRegisters” and the name of the register will be the value passed in the argument. The
following example creates a custom VSIRegister named customReg and assigns a value of
77.7 toit.

local inst = mc.mcGetlnstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local commandReg = mc.mcRegGetHandle(inst, motionDevice .. "/Command")
mc.mcRegSendCommand(commandReg, "create_reg:customReg")
mc.mcRegSetValue(commandReg, 77.7)

e RECOVER_PART:MILL - Currently Under Development. This command is intended to be
used on a 3-axis mill where the Z axis is the router. On machine disarm, the last positions of
the XYZ axes are recorded. Sending this command register will move XYZ axes to the last
known position before the machine was disarmed. The spindle command ‘M3’ will turn on
after XY motion and before Z motion.

HiCON_Config or DSPMC_Config

Opens or closes the plugin configuration window. Open =1, close = 0.

local inst = mc.mcGetlnstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local commandReg = mc.mcRegGetHandle(inst, motionDevice .. "/" .. motionDevice .. "_Config")
mc.mcRegSetValue(commandReg, 1)

SyncCount

Displays the number of MotionSync calls made by the plugin. Read only

local inst = mc.mcGetlInstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local syncCountHandle = mc.mcRegGetHandle(inst, motionDevice .. "/SyncCount")

local syncCounts = mc.mcRegGetValueLong(syncCountHandle)

mc.mcCntlSetLastError(inst, tostring(syncCounts))

AXIS_DISABLE_BITS

Disable one or more axes. Value sent is integer converted from hex value: 0x17500 + axis id. The axis
id starts at 1. The following example shows how to disable Y axis if it is mapped as motor 2 in Mach4.
The machine must be enabled first before disabling the axis. Once the machine is disabled and re-
enabled again, the disabled axis will become enabled again. Sending a value of 0 to this command
register clears the disabled axis and re-enables it if it is currently disabled.

© 2019 Vital Systems, Inc. 8 www.vitalsystem.com

VSI Mach4 Registers User Guide

local inst = mc.mcGetlInstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local axisDisableHandle = mc.mcRegGetHandle(inst, motionDevice .. "/AXIS_DISABLE_BITS")
local axis_2 = tonumber(string.format("%d", 0x17500)) + 2
mc.mcRegSetValueLong(axisDisableHandle, axis_2)

RunDeviceMacro

Runs the macro program downloaded on the VSI Motion Controller. Any value other than 0 will initiate
the process. Requires Macro Programming API Feature Activation.

local inst = mc.mcGetlInstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local runMacroHandle = mc.mcRegGetHandle(inst, motionDevice .. "/RunDeviceMacro")
mc.mcRegSetValueLong(runMacroHandle, 1)

ConfigLoad
Increments every time the plugin profile configuration is loaded from the Mach4 machine.ini file. Read
only.
local inst = mc.mcGetlnstance()
local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local configLoadHandle = mc.mcRegGetHandle(inst, motionDevice .. "/ConfigLoad")
local loadCounts = mc.mcRegGetValueLong(configLoadHandle)
StatusBits

Debug information for support. Read only.

DigitalOutputs

Debug information for support. Read only.

JogOverrideEnable

Enables an unmapped motor for movement in velocity mode. Value sent is integer converted from
hex value: 0Ox8D63FA || (axis id << 24). The axis id starts at 0. See example code.

Example value (motor 2):

local motor_2 = bit.bor(tonumber(string.format("%d", 0x8D63FA)), bit.Ishift(2, 24))

JogOverrideRate

Defines the velocity of the motor in JogOverrideEnable mode. Value is converted to a percentage of
motor max velocity in the Mach4 configuration. See example code.

© 2019 Vital Systems, Inc. 9 www.vitalsystem.com

VSI Mach4 Registers User Guide

JogOverridePosition

Defines the distance to move motor in JogOverrideEnable mode. A negative or positive value
determines the direction. See example code.

LaserMeasurementAxis

Starts the laser measurement process on given axis. Value sent is integer: 10000 + axis id. The axis id
starts at 0. Not available for DSPMC motion controllers. See example code.

LaserDistance

Distance found after laser measurement process completes. Read only. Not available for DSPMC
motion controllers. See example code.

LaserMeasureSuccess

Notifies Mach4 that the laser measurement process completed successfully. 0 = false, 1 = true. Read
only. Not available for DSPMC motion controllers. See example code.

ReservedOperation1

Debug register for support.

PowerMaxCommandReg

Defines the command to send to the PowerMax65/85. Not available for DSPMC motion controllers.
See example code.

Possible register values:
e CUT_MODE_FORCE — 8339
e CURRENT_SET_FORCE — 8340
e PRESSURE_SET_FORCE — 8342
e FAULT_CODE —8344
e CURRENT_SET_MIN — 8345
e CURRENT_SET_MAX — 8346
e PRESSURE_SET_MIN — 8348
e PRESSURE_SET_MAX — 8349
e ARC_TIME_LOW — 8350
e ARC_TIME_HIGH -8351
e TORCH_INDEX_1 - 2056
e TORCH_INDEX_2 - 2057
e OUTPUT_PRESSURE — 8268

© 2019 Vital Systems, Inc. 10 www.vitalsystem.com

VSI Mach4 Registers User Guide

PowerMaxValueReg

Defines the value to send to the PowerMax65/85. Not available for DSPMC motion controllers. See
example code.

PowerMaxReadReg

The value read from the PowerMax65/85 after successful command sent. Not available for DSPMC
motion controllers. See example code.

Encoder(0-8)

Encoder counts for each motor. The following example shows how to read encoder at index 0 and
print the results to the Mach4 history log.

local inst = mc.mcGetlInstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local encoderOHandle = mc.mcRegGetHandle(inst, motionDevice .. "/EncoderQ")

local encoderQValue = mc.mcRegGetValueLong(encoderOHandle)

mc.mcCntlSetLastError(inst, tostring(encoderOValue))

ZeroAllEncoders

Resets all encoder counts to zero. Any other value than 0 in the register will initiate the process.

local inst = mc.mcGetlnstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences"”, "MotionDevice", 'NO MOTION')
local runMacroHandle = mc.mcRegGetHandle(inst, motionDevice .. "/ZeroAllEncoders")
mc.mcRegSetValueLong(runMacroHandle, 1)

EncoderVelocity(0-8)

Rate of change of encoder rotation. See example code.

VADC_(0-7)

Analog input voltage value (0-3300mV for HiICON, +-10V for DSPMCv2). Read only. The following
example shows how to read VADC_O0 and print the results to the Mach4 history log.

local inst = mc.mcGetlInstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local vadcOHandle = mc.mcRegGetHandle(inst, motionDevice .. "/VADC_0")

local vadcOValue = mc.mcRegGetValueLong(vadcOHandle)

mc.mcCntlSetLastError(inst, tostring(encoder0OValue))

DRO_To_Ctrl_(0-19)

Floating point registers that are written or read directly to/from the motion controller.

© 2019 Vital Systems, Inc. 11 www.vitalsystem.com

VSI Mach4 Registers User Guide

local inst = mc.mcGetlInstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local dro3Handle = mc.mcRegGetHandle(inst, motionDevice .. "/DRO_To_Ctrl_3")
mc.mcRegSetValue(dro3Handle, 88.3) -- set the DRO value to 88.3

local dro3Value = mc.mcRegGetValue(dro3Handle) -- read the DRO value

DRO_From_Ctrl_(0-19)

Floating point registers that are read directly from the motion controller. Read only.

local inst = mc.mcGetlInstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local dro12Handle = mc.mcRegGetHandle(inst, motionDevice .. "/DRO_From_Ctrl_12")

local dro12Value = mc.mcRegGetValue(drol2Handle) -- read the DRO value

LED To_Ctrl_(0-31)

Binary registers that are written or read directly to/from the motion controller.

local inst = mc.mcGetlInstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local led3Handle = mc.mcRegGetHandle(inst, motionDevice .. "/LED_To_Ctrl_3")
mc.mcRegSetValue(led3Handle, 1) -- set the LED value to 1

local led3Value = mc.mcRegGetValue(led3Handle) -- read the LED value

LED From_Ctrl_(0-31)

Binary registers that are read directly from the motion controller. Read only.

local inst = mc.mcGetlInstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local led12Handle = mc.mcRegGetHandle(inst, motionDevice .. "/LED_From_Ctrl_12")

local led12Value = mc.mcRegGetValue(led12Handle) -- read the LED value

RTapDeccelTime
The amount of time (in seconds) that it takes for the Maximum Spindle RPM to decelerate to the
“Min Tap RPM".

RTapUselndexPulse

If enabled, this setting will allow the Z axis to wait for the index pulse trigger (from the spindle
encoder) before initiating the tap cycle. This allows for consistent threading orientation on all tap
cycles.

© 2019 Vital Systems, Inc. 12 www.vitalsystem.com

VSI Mach4 Registers User Guide

RTapIndexPulseRPM

The RPM of spindle when waiting for the Index Pulse. This has no effect if index pulse is not used for
the tapping cycle.

RTapMinTapRPM

The minimum RPM that the spindle will decelerate to. This stabilizes the spindle as it approaches the
target depth of the tapping cycle which allows the spindle to come to a complete halt when the
target depth is reached.

RTapMinTapTime

The amount of time (in seconds) that the spindle will maintain the “Min Tap RPM” before completely
turning off the spindle. Minimizing the RPM by the end of the tap cycle allows the spindle to take less
time decelerating, which helps prevent “overshooting” the depth.

RTapDriftRevs

The estimated amount of revolutions that the spindle will make before coming to a complete halt
from the “Min Tap RPM”.

RTapRetractDelay

The amount of time (in milliseconds) to delay before retracting the spindle after drilling.

RTapRetractRatio

This value is a multiplier for the RPM of the spindle when retracting. For example, if a spindle RPM of
500 is used for the tapping cycle and a “Retract Ratio” of 1.75 is set, then the spindle will retract at
an RPM of 875.

RTapFeedForward

NOT RECOMMENDED TO USE. It is still preferable to perform feed forward tuning on servo drives. Set
this to zero to disable it.

This parameter is used to minimize the following error between the spindle and Z motion by applying
a feed forward multiplier. It is recommended to use small values (ex. 0.1), then gradually increase the
value to the desired performance.

THC_ModeEnabled

Only used in ArcPro versions 1.xx. If enabled, puts the Z-axis into torch height control mode when
running M3 script. To remember the last reference position after a probe and only run probe
sequence once during a series of cuts, set the value of this register to 3. Otherwise, set the value to 1
to enable or 0 to disable. Refer to the ArcPro version 1.xx manual.

© 2019 Vital Systems, Inc. 13 www.vitalsystem.com

http://www.vitalsystem.com/portal/cnc/motion/ArcProPlasmaGuide.pdf

VSI Mach4 Registers User Guide

THC_ExtMode

Only used in ArcPro versions 2.xx. Secondary THC mode. Using this mode allows the user to bypass
or program their own probe and ignition phase in the M3 script. This register should be set to 1 after
receiving the ARCOK signal from the torch height device. The reference position is captured from
analog input after the THC delay expires. Enabled = 1, disabled = 0. Refer to the ArcPro version 2.xx
manual.

THC_MaxHeightCorrection

The maximum correction distance above the pierce height reference position. Refer to the ArcPro
version 1.xx or 2.xx manual.

THC_MinHeightCorrection

The maximum correction distance below the pierce height reference position. Refer to the ArcPro
version 1.xx or 2.xx manual.

THC SpeedPercent

Modifies the velocity of the torch height controlled axis during a cut. Refer to the ArcPro version 1.xx
or 2.xx manual.

THC_AccelPercent

Only used in ArcPro versions 2.xx. Modifies the acceleration of the torch height controlled axis
during a cut. Refer to the ArcPro version 2.xx manual.

THC_FeedrateAntiDive

Feedrate Anti-Dive prevents the THC from dropping the torch into a cut hole, diving into corners, or
diving at the end of a cut. When the XY cutting speed slows down, the plasma tip voltage increases,
and as a result, the response from the THC is to lower the torch. When the actual cutting feedrate

drops below the specified percentage of the commanded feedrate, Anti-Dive is engaged and the Z-
Axis motion is disabled and stays locked in positon. Refer to the ArcPro version 1.xx or 2.xx manual.

THC MaxTipVoltsRateOfChange

Only used in ArcPro versions 2.xx. Defines the maximum amount of tip volts change, from the
reference voltage, within 50ms time period. The controller is constantly checking every 50ms during
torch height control to verify that the tip voltage change has not exceeded this range. If the tip volts
changes drastically and falls outside of this range, torch height motion is disabled until the tip volts
comes back near the reference voltage. Refer to the ArcPro version 2.xx manual.

THC PierceHeight

Only used in ArcPro versions 1.xx. The Pierce Height defines, in inches or millimeters, the height
above the material that the cutter head will sit while conducting a pierce action. A good value for

© 2019 Vital Systems, Inc. 14 www.vitalsystem.com

http://www.vitalsystem.com/portal/cnc/motion/plasma.php
http://www.vitalsystem.com/portal/cnc/motion/plasma.php
http://www.vitalsystem.com/portal/cnc/motion/plasma.php
http://www.vitalsystem.com/portal/cnc/motion/plasma.php
http://www.vitalsystem.com/portal/cnc/motion/plasma.php
http://www.vitalsystem.com/portal/cnc/motion/plasma.php
http://www.vitalsystem.com/portal/cnc/motion/plasma.php
http://www.vitalsystem.com/portal/cnc/motion/plasma.php
http://www.vitalsystem.com/portal/cnc/motion/plasma.php
http://www.vitalsystem.com/portal/cnc/motion/plasma.php
http://www.vitalsystem.com/portal/cnc/motion/plasma.php

VSI Mach4 Registers User Guide

pierce height can be found by looking in the consumables chart for the system’s plasma cutter. This
value is relative to the detected material surface height. Refer to the ArcPro version 1.xx manual.

THC IgnitionHeight

ArcPro versions 1.xx
The Ignition Height is used on thick material where the pierce height is higher than the plasma
head can easily establish an arc. On thinner material the Ignition Height can be set to zero and
the system will skip the feature. This value is relative to the detected material surface height.
Refer to the ArcPro version 1.xx manual.

ArcPro versions 2.xx
When the value of this register is set to 999999, the tip voltage reference point will
automatically be found after THC_Delay expires. When the value is set to zero the tip voltage
reference point is the value that is put into the DRO_To_Ctrl_18 register. Refer to the ArcPro
version 2.xx manual.

THC_FloatingHeadOffset

Only used in ArcPro versions 1.xx. The value of this register should be set to zero when using ArcPro
versions 2.xx. The value of this register is added to the THC_PierceHeight and THC_IgnitionHeight
registers during THC setup. The value of this register is the offset from the torch height controlled
axis floating head mount and the torch tip. Refer to the ArcPro version 1.xx manual.

THC PierceDelay

Only used in ArcPro versions 1.xx. The time, in milliseconds, that the cutter head will pause while
piercing. This gives time for the hole to go all the way through the material. Refer to the ArcPro
version 1.xx manual.

THC ControlDelay

Milliseconds to wait, after probing or THC setup sequence, before giving control of the Z axis to the
torch height controller. Refer to the ArcPro version 1.xx or 2.xx manual.

THC _ProbeSpeed

Only used in ArcPro versions 1.xx. This value indicates at what percent of the max velocity the will Z
move down to locate the material surface height during the THC probing sequence. Refer to the
ArcPro version 1.xx manual.

THC ReferenceFound

Only used in ArcPro versions 1.xx. Indicates whether or not the Z reference height has been found in
a previous THC sequence. Enabled = 1, disabled = false. Read only. Refer to the ArcPro version 1.xx
manual.

© 2019 Vital Systems, Inc. 15 www.vitalsystem.com

http://www.vitalsystem.com/portal/cnc/motion/ArcProPlasmaGuide.pdf
http://www.vitalsystem.com/portal/cnc/motion/ArcProPlasmaGuide.pdf
http://www.vitalsystem.com/portal/cnc/motion/plasma.php
http://www.vitalsystem.com/portal/cnc/motion/plasma.php
http://www.vitalsystem.com/portal/cnc/motion/ArcProPlasmaGuide.pdf
http://www.vitalsystem.com/portal/cnc/motion/ArcProPlasmaGuide.pdf
http://www.vitalsystem.com/portal/cnc/motion/ArcProPlasmaGuide.pdf
http://www.vitalsystem.com/portal/cnc/motion/plasma.php
http://www.vitalsystem.com/portal/cnc/motion/ArcProPlasmaGuide.pdf
http://www.vitalsystem.com/portal/cnc/motion/ArcProPlasmaGuide.pdf
http://www.vitalsystem.com/portal/cnc/motion/ArcProPlasmaGuide.pdf
http://www.vitalsystem.com/portal/cnc/motion/ArcProPlasmaGuide.pdf

VSI Mach4 Registers User Guide

VSI Register Examples

PowerMax 65/85

Example send CUT_MODE_FORCE command to PowerMax65/85:

local inst = mc.mcGetlInstance()

local powerMaxCmdReg = mc.mcRegGetHandle(inst, "HICON/PowerMaxCommandReg")
local powerMaxCmdVal = mc.mcRegGetHandle(inst, "HICON/PowerMaxValueReg")

local cut_mode_force = tonumber(string.format("%d", 0x2093))

mc.mcRegSetValueLong(powerMaxCmdReg, cut_mode_force)
mc.mcRegSetValueLong(powerMaxCmdVal, 1)

mc.mcRegSetValueLong(powerMaxCmdReg, 0)
mc.mcRegSetValueLong(powerMaxCmdVal, 0)

Example read result from PowerMax65/85:

local inst = mc.mcGetlInstance()
local powerMaxReadReg = mc.mcRegGetHandle(inst, "HICON/PowerMaxReadReg")
local powerMaxReadValue = mc.mcRegGetValue(powerMaxReadReg)

Measure a Part using a Laser Input Sensor

Overview

This example assumes the machine is equipped with a laser input sensor installed on an axis and is
activated and deactivated as the axis moves along the side of the material to be measured.

laser

beam
o
z material
- -
> : — >
X direction

axis

of
start

travel

© 2019 Vital Systems, Inc. 16 www.vitalsystem.com

VSI Mach4 Registers User Guide

The axis is set into position at the start of material before the move. At the start of measurement,
the axis will move two units towards the end of material before starting to listening for the laser to
deactivate. This ensures that any false material at beginning of the part is ignored. The axis continues
to travel in the same direction until the laser is deactivated again (end of the material). This example
requires the use of the VS| Command and Jog Override registers to control the axis. The input for the
laser must be mapped to Input #63 in the Mach4 configuration. The scripting is done in three areas in
Mach4: PLC Script, Screen Load Script, Screen Button Script.

Screen Load Script

These are the global variables and function that will be used in the other two scripts.

inst = mc.mcGetlInstance() -- may already be defined in the Screen Load script

laserMeasurementReg = mc.mcRegGetHandle(inst, "HiCON/LaserMeasurementAxis")
laserMeasureSuccessReg = mc.mcRegGetHandle(inst, "HiCON/LaserMeasureSuccess")
laserDistanceReg = mc.mcRegGetHandle(inst, "HiCON/LaserDistance")

jogOverrideEnableReg = mc.mcRegGetHandle(inst, "HiCON/JogOverrideEnable")
jogOverrideRateReg = mc.mcRegGetHandle(inst, "HiCON/JogOverrideRate")
jogOverridePositionReg = mc.mcRegGetHandle(inst, "HiICON/JogOverridePosition")

hiconCommandReg = mc.mcRegGetHandle(inst, "HICON/Command")
motor_0 = bit.bor(tonumber(string.format("%d", 0x8D63FA)), bit.Ishift(0, 24))

maxAxisMove =48 -- max amount of units that the axis will move during measure
axisVelocity = 20 -- percentage of max velocity that the axis will move during measure
motionTimeout =0

motionStopped, measureStarted, measureEnded, processComplete = false, false, false, false

function StartLaserMeasure(moveDirection)
mc.mcCntlSetLastError(inst, "Measuring Part")
local laserMeasureEnable = mc.mcRegGetValue(laserMeasurementReg)
laserMeasureEnable = 10000
mc.mcRegSetValuelLong(laserMeasurementReg, laserMeasureEnable)
mc.mcRegSetValue(jogOverrideEnableReg, motor_0)

mc.mcRegSetValue(jogOverridePositionReg, maxAxisMove * moveDirection)
mc.mcRegSetValuelLong(jogOverrideRateReg, axisVelocity)
motionTimeout = os.clock() + 5 -- timeout delay 5 seconds
measureStarted = true
end

Button Clicked Script

Before pressing the button, the axis should be in position where the laser is not activated and the
material to be measured is in the direction of travel.

local direction =1 -- should be 1 or -1 depending on direction to travel
StartLaserMeasure(direction)

© 2019 Vital Systems, Inc. 17 www.vitalsystem.com

VSI Mach4 Registers User Guide

PLC Script

The PLCis constantly listening for when the controller reports to the plugin that the laser measurement
process is complete. The process will timeout if motionTimeout expires before the controller reports

that the process is complete.

ReadLaserDistance()
mc.mcCntlSetLastError(inst, string.format("%.4f", mc.mcRegGetValue(laserDistanceReg)))
end

function LaserMeasureSuccess()
return mc.mcRegGetValue(laserMeasureSuccessReg) ~= 0
end

function SyncMotion()
mc.mcRegSendCommand(hiconCommandReg, "")
mc.mcRegSendCommand(hiconCommandReg, "motion_sync")
mc.mcRegSendCommand(hiconCommandReg, "")

end

function ClearLaserMeasureParameters()
motionTimeout =0
measureStarted = false
mc.mcRegSetValueLong(laserMeasurementReg, 0)
mc.mcRegSetValueLong(laserMeasureSuccessReg, 0)
mc.mcRegSetValue(jogOverrideEnableReg, 0)
mc.mcRegSetValue(jogOverridePositionReg, 0)
mc.mcRegSetValueLong(jogOverrideRateReg, 0)

end

function StopMoveAfterMeasure()
ClearLaserMeasureParameters()
SyncMotion()
motionStopped = true

end

function RunProcess()
if measureStarted then
if os.clock() > motionTimeout and motionTimeout ~= 0 then
mc.mcCntlSetLastError(inst, "Laser did not detect part")
measureEnded = false
StopMoveAfterMeasure()
end
if LaserMeasureSuccess() then
mc.mcCntlSetLastError(inst, "Laser Measure Read Success")
measureEnded = true
StopMoveAfterMeasure()
end
end

if measureEnded then
measureEnded = false
StopMoveAfterMeasure()
end

if motionStopped then
motionStopped = false
if measureEnded then
measureEnded = false
ReadLaserDistance()
end
end
end

RunProcess()

© 2019 Vital Systems, Inc. 18

www.vitalsystem.com

VSI Mach4 Registers User Guide

Control FeedRate/RapidRate Override Using Encoder Velocity

Overview

The velocity of each encoder is stored in VSI registers and can be used to override the feedrate while
the machine is in motion. It's recommended to use an encoder that is NOT connected to a motor (ie,
handwheel) for this mode. The following example will use an MPG handwheel. The scripting is done
in three areas in Mach4: PLC Script, Screen Load Script, Screen Button Script.

Screen Load Script

These are the global variables and functions that will be used in the other two scripts.

inst = mc.mcGetlnstance() -- may already be defined in the Screen Load script

lastFeedRate = 0
lastRapidRate =0
velOverrideMode = 0

-- returns the encoder index for the MPG at index 0

function GetMPGAXis()
local hReg = mc.mcMpgGetEncoderReg(inst, 0) -- value to use as 2"! parameter is the MPG id in Mach4 MPGs configuration, starts at zero
local regName = mc.mcRegGetlInfo(hReg)
return tonumber(string.match(regName, "%d+")) -- returns encoder index mapped in Mach4 MPGs configuration

end

mpgAXxis = GetMPGAXis()

-- reset the feedrate overrides back to normal values on screen load
function ResetVelocityOverride()
if lastFeedRate == 0 or lastRapidRate == 0 then
lastFeedRate = 100
lastRapidRate = 100
end

mc.mcCntlSetFRO(inst, lastFeedRate)
mc.mcCntlSetRRO(inst, lastRapidRate)
end

ResetVelocityOverride()

function ToggleVelocityOverride()
if velOverrideMode == 1 then
if lastFeedRate == 0 or lastRapidRate == 0 then
lastFeedRate = 100
lastRapidRate = 100
end
mc.mcCntlSetFRO(inst, lastFeedRate)
mc.mcCntlSetRRO(inst, lastRapidRate)
velOverrideMode = 0
else
lastFeedRate = mc.mcCntlGetFRO(inst)
lastRapidRate = mc.mcCntlGetRRO(inst)
mc.mcCntlSetFRO(inst, 0)
mc.mcCntlSetRRO(inst, 0)
velOverrideMode = 1
end
end

© 2019 Vital Systems, Inc. 19 www.vitalsystem.com

VSI Mach4 Registers User Guide

PLC Script

The PLC will listen for when the state of velOverrideMode is changed. If the velOverrideMode is
enabled, the encoder velocity will override the current feedrate.

if velOverrideMode == 1 then
local hReg = mc.mcRegGetHandle(inst, "HICON/EncoderVelocity" .. tostring(mpgAxis))
local value = mc.mcRegGetValue(hReg)
mc.mcCntlSetFRO(inst, value/10)
mc.mcCntlSetRRO(inst, value/10)
end

Button Clicked Script

ToggleVelocityOverride()

After successful compile of the above scripts, run motion in the MDI or with a gcode file and press
the button to toggle the encoder velocity override mode. If the encoder is not moving, the feedrate
should drop to zero. As you turn the encoder, the velocity will increase and the feedrate will change.

Axis Movement Override

Command a motor to move outside of Mach4 control. In the following example motor 1 is
commanded to move 48 units in the positive direction at a rate of 20% of the maximum velocity for
the motor. This function sends movement to the VSI motion controller directly. Moving the axis
outside of Mach4 control requires a motion sync call afterwards to prevent a following error.

jogOverrideEnableReg = mc.mcRegGetHandle(inst, "HICON/JogOverrideEnable")
jogOverrideRateReg = mc.mcRegGetHandle(inst, "HiCON/JogOverrideRate")
jogOverridePositionReg = mc.mcRegGetHandle(inst, "HICON/JogOverridePosition")

motor_1 = bit.bor(tonumber(string.format("%d", 0x8D63FA)), bit.Ishift(1, 24))
maxAxisMove = 48 -- max amount of units that the axis will move during measure
axisVelocity = 20 -- percentage of max velocity that the axis will move during measure

mc.mcRegSetValue(jogOverrideEnableReg, motor_1)

mc.mcRegSetValue(jogOverridePositionReg, maxAxisMove) -- direction determined by the sign of maxAxisMove
mc.mcRegSetValuelLong(jogOverrideRateReg, axisVelocity)

© 2019 Vital Systems, Inc. 20 www.vitalsystem.com

VSI Mach4 Registers User Guide

Absolute Encoder Feedback

Initialize Encoder Axis with Counts Per Rev (Mach4 Enable Button Down Script)

This command will set up the encoder at the axis id to be recognized as an absolute encoder in the
motion controller’s firmware. The spaces and the ‘CPR’ text in the format of the command'’s value are
required for the command to work. The down action of the Mach4 enable button should be turned
off and replaced by the following logic in the button down script function.

local inst = mc.mcGetInstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')

local commandReg = mc.mcRegGetHandle(inst, motionDevice .. "/Command")

local fwVersion = mc.mcRegSendCommand(commandReg, "SETUP_ABSENC_AXIS_PARAM:0 CPR 32786")
wx.wxMilliSleep(1500) -- wait 1.5 seconds until sending command again

Read Absolute Encoder Position (Mach4 Enable Button Down Script)

In the following example, any axis initialized to record absolute encoder feedback is read and the
motor position is synced to the actual feedback position. In the example, output 2 is used as the SEN
signal for all motor drives. This code will follow the above code.

local val = mc.mcRegSendCommand(reg, "EXEC_ABSENC_READ_CMD:SEN " .. tostring(mc.OSIG_OUTPUT2));

if (val ~="0") then
wx.wxMessageBox("ABS Encoder Error Detected: " .. tostring(val));
return

end

mc.mcCntlEnable(inst, 1);
scr.SetProperty('tbutton?2', 'Button State', 'Down');

Clear Absolute Encoder Position (Mach4 Enable Button Down Script)

local inst = mc.mcGetlInstance()

local motionDevice = mc.mcProfileGetString(inst, "Preferences", "MotionDevice", 'NO MOTION')
local commandReg = mc.mcRegGetHandle(inst, motionDevice .. "/Command")

local fwVersion = mc.mcRegSendCommand(commandReg, "CLEAR_ABS_ENC_HOMEPQOS")
wx.wxMilliSleep(1500) -- wait 1.5 seconds until sending command again

© 2019 Vital Systems, Inc. 21 www.vitalsystem.com

